Inverse Functions

Inverse Functions If f is a one-to-one function with domain A and range B, we can define an inverse function f^{-1} (with domain B and range A) by the rule

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$.

- This satisfies the requirements for the definition of a function, precisely because each value of y in the domain of f⁻¹ has exactly one x in A associated to it by the rule y = f(x).
- We will use this very important equivalence of equations in three ways:
 - To find f⁻¹(y) for specific values of y without finding a formula for f⁻¹ itself.
 - To find a formula for f^{-1} .
 - To define new functions as inverses of well known functions.

Finding $f^{-1}(y)$ for specific values of y.

Example: If $f(x) = x^3 + 1$, use the equivalence of equations given above find $f^{-1}(9)$.

► We first write out our equivalence of equations:

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$.

- Replacing y by 9 tells us that $f^{-1}(9) = x$ is the same as saying that f(x) = 9.
- Substituting the formula for f tells us that $f^{-1}(9) = x$ is the same as saying that $x^3 + 1 = 9$.
- ▶ Thus solving for x in $f^{-1}(9) = x$ is the same as solving for x in $x^3 = 8$. which gives x = 2.
- Thus $f^{-1}(9) = 2$.

Try to repeat this process to find f⁻¹(28) before you see the solution. (Do not solve this by finding a formula for the inverse function, the purpose of this exercise to is learn the above method.)

Finding $f^{-1}(y)$ for specific values of y.

Example: If $f(x) = x^3 + 1$, find $f^{-1}(28)$.

- $f^{-1}(y) = x$ if and only if f(x) = y.
- This tells us that $f^{-1}(28) = x$ if and only if f(x) = 28.
- Therefore $f^{-1}(28) = x$ if and only if $x^3 + 1 = 28$.
- Thus $f^{-1}(28) = x$ if and only if $x^3 = 27$. which is the same as saying that x = 3.
- Thus $f^{-1}(28) = 3$.
- ► Note: the statement of equivalence "if and only if" is often abbreviated to iff or ⇐⇒ in mathematics.

A bit of guesswork

Example: If $g(x) = \cos(x) + 2x$, find $g^{-1}(1)$.

▶ In this case, we know that g is a one-to-one function (why?)

• Because
$$g'(x) = 2 - sin(x) > 0$$
.

- ▶ We know $g^{-1}(1) = x \iff 1 = \cos(x) + 2x$ (using $g^{-1}(1) = x$ is the same as g(x) = 1).
- ▶ It is difficult to solve for x in the equation 1 = cos(x) + 2x but in this case we can guess:
- ▶ We know that cos(0) = 1, therefore cos(0) + 2(0) = 1 and x = 0 must the unique value of x which fits the equation 1 = cos(x) + 2x.
- Thus $g^{-1}(1) = 0$.

Domains and Ranges

Note that the domain of f^{-1} equals the range of f and the range of f^{-1} equals the domain of f.

- **Example** Let $g(x) = \sqrt{4x+4}$.
- ▶ What is Domain g? The domain of g is all values of x for which $4x + 4 \ge 0$ i.e. $\{x | x \ge -1\}$.
- What is Range g? The range of g is $\{y|y \ge 0\}$.
- ▶ Does g^{-1} exist?
- ▶ Yes because *g* is a 1-1 function.
- ▶ What is the domain and range of g⁻¹?
- The domain of g^{-1} is the range of g which is $\{x | x \ge 0\}$.
- The range of g^{-1} is the domain of g which is $\{x | x \ge -1\}$.

What is
$$g^{-1}(4)$$
?
 $g^{-1}(4) = x \iff g(x) = 4 \iff \sqrt{4x + 4} = 4 \iff 4x + 4 = 16$
 $\Leftrightarrow 4x = 12 \iff x = 3$. i.e.
 $g^{-1}(4) = 3$.