Inverse Functions

Inverse Functions If f is a one-to-one function with domain A and range B, we can define an inverse function f^{-1} (with domain B and range A) by the rule

$$
f^{-1}(y)=x \text { if and only if } f(x)=y \text {. }
$$

This satisfies the requirements for the definition of a function, precisely because each value of y in the domain of f^{-1} has exactly one x in A associated to it by the rule $y=f(x)$.

- We will use this very important equivalence of equations in three ways:

To find $f^{-1}(y)$ for specific values of y without finding a formula for f^{-1} itself.

- To find a formula for f^{-1}.
- To define new functions as inverses of well known functions.

Finding $f^{-1}(y)$ for specific values of y.

Example: If $f(x)=x^{3}+1$, use the equivalence of equations given above find $f^{-1}(9)$.

- We first write out our equivalence of equations:
$f^{-1}(y)=x$ if and only if $f(x)=y$.
$>$ Replacing y by 9 tells us that
$f^{-1}(9)=x$ is the same as saying that $f(x)=9$.
- Substituting the formula for f tells us that
$f^{-1}(9)=x$ is the same as saying that $x^{3}+1=9$.
- Thus solving for x in
$f^{-1}(9)=x$ is the same as solving for x in $x^{3}=8$. which gives
$x=2$.
$>$ Thus $f^{-1}(9)=2$.
- Try to repeat this process to find $f^{-1}(28)$ before you see the solution. (Do not solve this by finding a formula for the inverse function, the purpose of this exercise to is learn the above method.)

Finding $f^{-1}(y)$ for specific values of y.

Example: If $f(x)=x^{3}+1$, find $f^{-1}(28)$.
$>f^{-1}(y)=x$ if and only if $f(x)=y$.

- This tells us that $f^{-1}(28)=x$ if and only if $f(x)=28$.
- Therefore $f^{-1}(28)=x$ if and only if $x^{3}+1=28$.
- Thus $f^{-1}(28)=x$ if and only if $x^{3}=27$. which is the same as saying that $x=3$.
$>$ Thus $f^{-1}(28)=3$.
> Note: the statement of equivalence "if and only if" is often abbreviated to iff or \Longleftrightarrow in mathematics.

A bit of guesswork

Example: If $g(x)=\cos (x)+2 x$, find $g^{-1}(1)$.
$>$ In this case, we know that g is a one-to-one function (why?)
$>$ Because $g^{\prime}(x)=2-\sin (x)>0$.
$>$ We know $g^{-1}(1)=x \Longleftrightarrow 1=\cos (x)+2 x$ (using $g^{-1}(1)=x$ is the same as $g(x)=1)$.
$>$ It is difficult to solve for x in the equation $1=\cos (x)+2 x$ but in this case we can guess:
$>$ We know that $\cos (0)=1$, therefore $\cos (0)+2(0)=1$ and $x=0$ must the unique value of x which fits the equation $1=\cos (x)+2 x$.
$>$ Thus $g^{-1}(1)=0$.

Domains and Ranges

Note that the domain of f^{-1} equals the range of f and the range of f^{-1} equals the domain of f.

- Example Let $g(x)=\sqrt{4 x+4}$.
- What is Domain g ? The domain of g is all values of x for which $4 x+4 \geq 0$ i.e. $\{x \mid x \geq-1\}$.
- What is Range g ? The range of g is $\{y \mid y \geq 0\}$.
$>$ Does g^{-1} exist?
- Yes because g is a 1-1 function.
- What is the domain and range of g^{-1} ?
$>$ The domain of g^{-1} is the range of g which is $\{x \mid x \geq 0\}$.
- The range of g^{-1} is the domain of g which is $\{x \mid x \geq-1\}$.
- What is $g^{-1}(4)$?
$>g^{-1}(4)=x \Longleftrightarrow g(x)=4 \Longleftrightarrow$ $\sqrt{4 x+4}=4 \Longleftrightarrow 4 x+4=16$ $\Longleftrightarrow 4 x=12 \Longleftrightarrow x=3$. i.e. $g^{-1}(4)=3$.

